Steve Martin Southeast Washington Snake River Salmon Recovery Board

Snake ESU/DPS update: Tucannon Habitat Programmatic and Asotin

Interesting Initiatives

CHaMP – habitat status and trends

Life Cycle Mortality Assessment

Project Effectiveness Monitoring

Time Lapse Camera Remote Monitoring

Low elevation aerial video

Agroforestry LWD donation

Recreational Fish Harvest Management

Washington Approach

Geographic Context for Spring Chinook ESU

Tucannon Programmatic

Goal is to improve habitat conditions in the Tucannon River for the spring chinook domain by 17% as identified by the gap analysis in the 2008 FCRPS BiOp

Strategy

The watershed restoration framework (Roni, et al 2002) recommended that natural process (hydrology, sediment, temperature) be restored and isolated habitats be reonnected – this took 15 years. Those are now being followed with:

- 1. Develop side channels/connect floodplains
- 2. Remove or set back infrastructure (dikes, roads, buildings)
- 3. Enhance instream complexity (large wood)
- 4. Enhance riparian

Connect River to Floodplain

Results Colder Water & More Water

Tucannon River Instantaneous Minimum Flow at Marengo

Regional Comparisons

Sediment

Adult Spring Chinook

Figure 14. Tucannon River spring Chinook natural origin returns with the moving ten year geometric mean (black line) for the 1985-2013 run years.

Asotin Creek Intensively Monitored Watershed

Acknowledgements

Collaborators and Funding

Landowners and Sponsors

Inland Metals Electric L.L.C.

635 5th Street • Clarkston, WA 99403 (509) 758-2522 • Fax: (509) 751-0893 WA Contr# INLANME055QP

TDS
888-Call-TDS
www.tdstelecom.com

Thornton & Koch Families

OUTLINE

- Intensively Monitored Watershed
 - Who is doing "it" PSMFC, RCO, ELR, WDFW
 - Why are IMW's necessary
 - What IMW's are
- What have we been doing in Asotin (2008 2014)
 - Monitoring
 - Restoration
 - Results

Why conduct restoration studies

Restoration Spending

Distribution and type of river restoration projects in the Pacific Northwest (35,696 projects; Katz et al. 2007).

Intensively monitored watersheds (IMWs)

Asotin IMW

Location and Selection process

Asotin IMW goals

measures of success

- Success
 - ↑Smolts per Spawner

- Other Metrics
 - Juv. Abundance, Growth, Movement, Survival, Production (weight/area/time)

Monitoring Infrastructure

Experimental Design

Treatment Schedule

2012 – South Fork

2013 – Charley

2014 – North Fork

Monitoring

Fish

Habitat

Monitoring Fish (WDFW)

Adult weir

Smolt trap

Restoration rationale

Median wood counts (In) in managed and reference conditions across the interior Columbia Basin (Roper et al. 2011; AFS symposium in Seattle, WA).

Restoration method

Restoration methods Deflector PALS

Restoration methods

Mid-Channel PALS

Restoration methods Key LWD

Restoration Implementation

Number and type of structures built in South Fork Asotin Creek (2012; n = 197) and Charley Creek (2013; n = 208).

Restoration costs

Materials	Cost/ Structure
Posts (delivered)	10.00
Tree delivery	20.00
Labor (Installation)	40.00

Habitat Changes

Habitat Changes

trial response: 2012

Stream Flow

Geomorphic change detection in North Fork trial restoration site: 2012-2011.

Legend

Habitat changes

FISH Results Juvenile Steelhead PIT Tag Summary

Stream	2005	2006	2007	2008	2009	2010	2011	2012	2013	Total
Asotin	2,462	1,552	1,895	1,862	946	2,605	4,002	4,680	3,378	23,382
Charley	-	-	-	423	1,294	1,953	1,282	1,136	1,247	7,335
North Fork	-	-	-	372	470	1,396	906	932	1,809	5,885
South Fork	-	-	-	549	735	1857	1275	1495	1940	7851
IMW subtotal	-	-	-	1,344	2,499	5,206	3,463	3,563	4,996	21,071
Total	2,462	1,552	1,895	3,206	3,445	7,811	7,465	8,243	8,374	44,453

Summary of the number of juvenile steelhead (> 70 mm) PIT tagged in Asotin Creek from 2005 to 2013. * WDFW fish data provisional for 2012 & 2013.

FISH RESULTS

Difference of juvenile steelhead density between South Fork treatment and all controls combined (Pre P = 0.12).

Looking Forward

- Habitat Programmatic Expansion
- IMW and CHaMP results
- Life Cycle Mortality and Project Effectiveness results
- Maintain the Course

Thank You

